
LBSC 690: Information Technology
Lecture 07

Programming and Javascript

William Webber
CIS, University of Maryland

Spring semester, 2012

Programming languages: the machine

◮ The language understood by the machine is binary
(machine code):

00000000 11001000 01001000 00100000

◮ This can be transliterated to and from a human-readable
language (assembly language):

add $4, $6, $8

◮ But that assembly language is:
◮ too low-level
◮ not portable (each processor type has its own assembly

language)

and so is rarely written directly today

Higher level programming languages

◮ Modern programmers work in one or more higher level
languages (HLL)

◮ Different HLL offer different features, abstractions, speeds,
portabilities

◮ But every HLL must be translated into machine language
for the machine to run it

◮ There are two processes by which translation can take
place:

◮ Compilation
◮ Interpretation

Compilation and compiled languages

◮ In compilation, a program written in one language is
converted in its entirety to another language before it is run

◮ Think of translating a book from English to German
◮ Compilation may be:

◮ To machine code
◮ To another (generally lower level) HLL
◮ To an intermeidate representation

The latter two representations then need to be further
translated, either through compilation or interpretation (see
next) into machine code

Interpretation and interpreted languages

◮ In intepretation, when a program is being run, it is read by
another program, called an interpreter . . .

◮ and the intepreter executes the instructions line by line
using machine code

◮ Think of interpreting an English speaker to a German
listener, a sentence at a time

Compilation versus interpretation

Compiled languages:

◮ Are faster (can be up to
100 times faster)

◮ Allow error checking
before program is run

Interpreted languages:

◮ Are more flexible
◮ Do not need separate

compilation step
◮ Are generally more

portable

BUT distinction between the two somewhat blurred (e.g. Java
can be intepreted or compiled; many “interpreted” languages
are first compiled into an intermediate representation (byte
code)).

Javascript

We will be looking at Javascript

◮ Developed by Netscape programmers in mid 1990s
◮ Implemented in all modern web browsers
◮ Mainly used for adding automation to web pages:

◮ checking forms for errors before submission
◮ animating web banners and other toys
◮ implementing desktop-like rich interfaces (e.g. Gmail)

◮ But can also be used as a general purpose programming
language

Working with Javascript

Two environments for experimenting with javascript:

◮ Online Javascript console: http://jsconsole.com. For
typing simple examples and seeing their result.

◮ Embedding your program in an HTML file:

<html><body><s c r i p t language= ” j a v a s c r i p t ”>
document . w r i t e (2 + 2) ;
< / s c r i p t>< / body>< / html>

and loading the file up in your browser.
◮ For latter, use Firefox’s “Tools > Web developer > Error

console”

http://jsconsole.com

A simple example

<html><body><s c r i p t language= ” j a v a s c r i p t ”>
var i = 0 ;
var va l = 1 ;

wh i le (i < 10) {
i = i + 1 ;
va l = va l ∗ 2;
document . w r i t e (” ” + i + ” : ” + va l + ”
\n ”) ;

}
</ s c r i p t></ body></ h tml>

◮ A program is a series of commands (statements) to the
computer (the Javascript interpreter in the browser)

◮ The interpreter executes these commands one line at a
time

◮ We use document.write() to cause the interpreter to write
output to the browser window

Expressions

◮ Basic unit is an expression, which has a value
◮ Examples expressions and their values are:

Expression Value

2 2
”cat” "cat"
10 + 2 ∗ 5 20
3 > 2 true

◮ Type these into the Javascript console and see the results

Types

◮ Values have types
◮ There are six basic types in Javascript:

Type Example Description

Number 2 Numerical value (signed,
fractional)

String ”Hello” Text (note the quotes)
Boolean 3 > 2 True or false
Function document.write() Executes a group of code
Object {”name”: ”Eve”, ”age”: 6} Aggregates compound val-

ues
Undefined undefined Special value for undefined

variables (see below)

Operators

◮ Operators combine values to create new values
◮ Numeric operators, as you’d expect: 2 + 2, 5 − 2.1
◮ Boolean operators, test for a condition, resolve to true or

false: 3 > 5
◮ String operators, concatenate two strings:

”Hello, ” + ”world” → "Hello, world"
◮ Brackets can be used to specify precedence:

((3 + 3) > 8) || !((5 ∗ 1) <6)
◮ || OR’s two Boolean expressions, && AND’s them, NOT’s a

single expression

Statements

◮ A statement contains an expression, and ends with an “;”.
◮ While an expression has a value, a statement is executed

for its side-effect:
◮ Print out a value to the screen
◮ Save a value to a database
◮ Assign a value to a variable (see next)

◮ A program is made up of a sequence of statements

Variables

var name = ” John Smith ” ;
document . w r i t e (name + ”<br ” >);
name = name + ” , Jun io r ” ;
document . w r i t e (name + ”<br ” >);

◮ Variables allow us to capture the value of an expression for
later reuse.

◮ A variable gives a “name” to a value
◮ This name can be reassigned later.

Conditionals

var a = 3;
i f (a < 5) {

document . w r i t e (” a i s smal l !<br ”) ;
} else i f (a < 10) {

document . w r i t e (” a i s middle−s ized !<br ”) ;
} else {

document . w r i t e (” a i s b ig !<br ”) ;
}

◮ if statement tests a Boolean condition, executes block of
code only if true.

◮ else statement is executed if condition is false.
◮ else if can be used to chain if conditionals

Loops

var i = 0 ;
wh i le (i < 10) {

document . w r i t e (i + ”
”) ;
i = i + 1 ;

}

f o r (var i = 0 ; i < 10; i ++) {
document . w r i t e (i + ”
”) ;

}

◮ A loop statement (while() or for()) executes a block
repeatedly as long as a conditional statement is true

◮ for() is a short-hand for a common case of while();
the above two code segments are equivalent

Revisiting a simple example

<html><body><s c r i p t language= ” j a v a s c r i p t ”>
var i = 0 ;
var va l = 1 ;

wh i le (i < 10) {
i = i + 1 ;
va l = va l ∗ 2;
document . w r i t e (” ” + i + ” : ” + va l + ”
\n ”) ;

}
</ s c r i p t></ body></ h tml>

Read through this program and try to figure out what it does.

Calling functions

document . w r i t e (” Hel lo , world ! ”) ;
var a = Math . log (1024 , 2) ;

◮ Functions encapsulate a set of statements to provide
reusable functionality.

◮ They may be called with arguments, and may return
values.

◮ Some functions are called primarily for their side effects
(document.write()).

◮ Other functions are called primarily for the value they
return (Math.log()).

Defining functions

f u n c t i o n add (a , b) {
r e t u r n a + b ;

}

◮ Functions are defined using the function keyword . . .
◮ followed by the name of the function . . .
◮ and a list of the function’s parameters

Function parameters and return

f u n c t i o n add (a , b) {
r e t u r n a + b ;

}
document . w r i t e (add (2 , 5)) ;

◮ Function parameters act as variables, but are visible only
inside the function (in computer jargon, they’re local
variables)

◮ When a function is called, its parameters are set to the
calling arguments

◮ The returned value (if any) is returned via the return
statement

◮ In the calling code, the function evaluates to its returned
value

An example of defining functions

<html><body><s c r i p t language= ” j a v a s c r i p t ”>
f u n c t i o n nextSquare (n) {

i f (n < 0) {
r e t u r n 0;

}
f o r (i = 1 ; i ∗ i <= n ; i ++)

;
r e t u r n i ∗ i ;

}
f u n c t i o n displayNextSquare (n) {

document . w r i t e (” The next square a f t e r ”
+ n + ” i s ” + nextSquare (n) + ”
”) ;

}

displayNextSquare (1 0) ;
displayNextSquare (102145) ;
</ s c r i p t>< / body>< / html>

Useful input and output functions

<html><body><s c r i p t language= ” j a v a s c r i p t ”>
var n = Number(prompt (” Please enter a number ”)) ;
a l e r t (” The square of ” + n + ” i s ” + n ∗ n) ;
< / s c r i p t>< / body>< / html>

◮ alert(MESSAGE)writes a message in a pop-up window.
◮ prompt(MESSAGE)write a message, asks the user to

enter some text, and returns the text that was entered.
◮ Note that Number() takes a string and converts it to a

number.

Objects

var user = { ”name” : ” Peter ” , ” age ” : 24 ,
” l o g i n ” : ” pete ” } ;

user . age = 25;
document . w r i t e (” The user i s ” + user . name +

” , age ” + user . age + ”
”) ;

◮ An “Object” is a composite value.
◮ Object has named properties, each of which has a value.
◮ Property foo of object bar is accessed as foo.bar, or
foo["bar"]

◮ Note that when we say document.write, we are
accessing the write property (a function) of the
document object.

Arrays

var words = [” one ” , ” f i s h ” , ” two ” , ” f i s h ”] ;
f o r (var i = 0 ; i < words . length ; i ++) {

document . w r i t e (words [i] + ”
”) ;
}

◮ A special type of object is an array.
◮ Properties (keys, slots) of array are all sequential numbers.
◮ First slot is number 0, second 1, and so forth.

	Programing languages
	Javascript: up to functions
	Javscript: functions and beyond

