Lecture 13: More uses of Language Models

William Webber (william@williamwebber.com)

COMP90042, 2014, Semester 1, Lecture 13

・ロト・日本・モト・モート ヨー うへで

What we'll learn in this lecture

- Comparing documents, corpora using LM approaches
- Generalization of P(q|d) to same comparison model

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Relevance feedback under LM
- Relevance models
- Cross-lingual IR using LM techniques

Comparing documents

- In VSM, document similarity computed by distance in term space (cosine similarity)
- In LM, documents compared by similarity between probability distributions

- Several measures of dissimilarity between probability distributions available
- One is *Kullback-Leibler Divergence* (KL Divergence)

Kullback-Leibler divergence

- Let p(x) and q(x) be two prob dists over \mathcal{X}
- ▶ Then KL Divergence (relative entropy) D(p||q) defined as:

$$D(p||q) = \sum_{x \in \mathcal{X}} p(x) \ln \frac{p(x)}{q(x)}$$
(1)

- Describes "mis-match" between distributions
 - ► E.g. if we develop optimal compression code based on q(), and use it to encode p(), D(p||q) is average extra bits per symbol
- Minimum value is 0, means identical distributions.
- Will give $+\infty$ if q(x) = 0, p(x) > 0 for any x.

KL Divergence applied

$$D(p||q) = \sum_{x \in \mathcal{X}} p(x) \ln \frac{p(x)}{q(x)}$$
(2)

▶ Set $p = \theta_{d_1}$ as model of doc d_1 , $q = \theta_{d_2}$ as model of doc 2

- Will probably want some background smoothing
- KL Divergence applicable to any models
 - E.g. for doc *d* and corpus *C*, $D_{KL}(\theta_d \| \theta_c)$
- Note: not symmetric
 - ► Mutual information, I(X; Y) = D_{KL}{P(X, Y)||P(X)P(Y)}, a symmetric alternative
 - KL divergence more appropriate where natural assymmetry (as doc to corpus)
 - MI blows up if p(x) = 0, q(x) > 0
 - KL divergence doesn't

KL Divergence as retrieval metric

Could use KL-Divergence as retrieval metric:

$$R(Q,D) = -KL(\theta_Q \| \theta_D)$$
(3)

In fact, this rank-equivalent to regular LM if

$$p(w|\theta_Q) = \frac{c(w,Q)}{|Q|} \tag{4}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

i.e. if we use MLE for query model. (Neat, huh?)

Relevance feedback

- Query expanded with feedback from query results:
 - Automatically take top docs as relevant (PRF)
 - User specifies relevant documents (TRF)
- In VSM / Rocchio,
 - Query modelled as pseudo-document
 - Expanded by averaging with mean of feedback documents

Supports arbitrary weighting of feedback terms

Relevance feedback in LM4IR

- In LM4IR, query is example utterance generated by language model
- No straightforward way of weighting query terms
- So expansion only by literally adding terms to query
- Can't just add all terms from expansion documents to query
- How to select terms to add?
- Ratio models:
 - Select terms with high probability in feedback documents

- ... low probability in collection
- Still unpleasantly heuristic

Relevance feedback with KL Divergence

- Want method that
 - Supported weights in expanded query
 - Provides mechanism for calculating weights
- This is provided by the KL Divergence framework
- Interpolate query model θ_Q with feedback model θ_F :

$$\theta_{Q'} = (1 - \alpha)\theta_Q + \alpha\theta_{\mathcal{F}} \tag{5}$$

Then calculate:

$$R(D,Q;\mathcal{F}) = -D(\theta_{Q'} \| \theta_D)$$
(6)

- Efficiency gained by only retaining high-score terms in $M_{Q'}$
- Now we need to estimate θ_F from feedback documents F = {d₁, d₂,..., d_n}

Estimating feedback model: unmixed

Follow the development in Zhai and Lafferty (CIKM, 2001)

- Want to find model $heta_{\mathcal{F}}$ that generated (relevant parts of) \mathcal{F}
- Assume unigram. Then:

$$P(\mathcal{F}|\theta) = \prod_{i} \prod_{w} P(w|\theta)^{c(w,d_i)}$$
(7)

where w iterates over words, i over feedback documents

- Find θ that maximizes (7) (for MLE)
- This is not (quite)¹ $\frac{c(w,\mathcal{F})}{\|\mathcal{F}\|}$, unless $|\mathcal{F}| = 1$
- However, not all of feeback documents relevant
- ... so (7) not appropriate

¹I think. Tell me if I'm wrong.

Estimating feedback model: mixture model

- Assume instead that words in *F* come from mixture of two models:
 - Relevance feedback model $\theta_{\mathcal{F}}$
 - Background (corpus) model C
- Therefore:

$$P(\mathcal{F}|\theta) = \prod_{i} \prod_{w} ((1-\lambda)P(w|\theta) + \lambda P(w|C))^{c(w,d_i)}$$
(8)

- Fix λ , solve for θ that maximizes (8)
 - Using EM algorithm (see Zhai and Lafferty for details)
- That θ is the value plugged in for $\theta_{\mathcal{F}}$ in:

$$\theta_{Q'} = (1 - \alpha)\theta_Q + \alpha\theta_{\mathcal{F}} \tag{9}$$

Finally, score using KL divergence

Mixture model: interpretation

$$P(\mathcal{F}|\theta) = \prod_{i} \prod_{w} ((1-\lambda)P(w|\theta) + \lambda P(w|C))^{c(w,d_i)}$$
(8)

- Estimating θ on (8) dampens weight of coll-frequent terms
- ▶ If term w is frequent in feedback documents (c(w, F) high):
 - if w is frequent in collection (c(w, C) high)
 - then $c(w, \mathcal{F})$ largely explained by c(w, C)
 - and $P(w, \theta)$ doesn't have to be high
 - if w is rare in collection (c(w, C) low)
 - then $c(w, \mathcal{F})$ not explained by c(w, C)
 - and $P(w, \theta)$ must be high
- Note λ must be fixed (i.e. externally tuned)
- ► Trying to optimize (8) for both λ and θ sets $\lambda = 0$, $P(w|\theta) \approx \frac{c(w,\mathcal{F})}{\|\mathcal{F}\|}$ (why?)
- Seems a Bayesian approach is possible (project for brave?)

Mixture model: practical effectiveness

$$P(\mathcal{F}|\theta) = \prod_{i} \prod_{w} ((1-\lambda)P(w|\theta) + \lambda P(w|C))^{c(w,d_i)}$$
(8)

- Zhai and Lafferty (CIKM 2001) find PRF with mixture model improves over plain LM
- Consider another feedback model (minimize divergence from feedback model), similar effectiveness
- LM+PRF beats TF*IDF+Rocchio
- ▶ λ not too sensitive, as long as not very high (gives very bad performance)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Relevance model

$$\begin{aligned} R(Q, D; \mathcal{F}) &= -KL(\theta_{Q'} \| \theta_D) \\ &= -KL(\{(1 - \alpha)\theta_Q + \alpha\theta_{\mathcal{F}}\} \| \theta_D) \\ &\approx P(R = r | Q, D) \\ P(w | \theta_{Q'}) &= (1 - \alpha) \frac{c(w, q)}{|q|} + \alpha P(w | \theta_{\mathcal{F}}) \\ &\approx P(w | \theta_R) \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- \blacktriangleright Query model expanded with relevance feedback, θ'_Q
- ... an approximation to relevance model

Lavrenko and Croft (2001), give similar (simpler) relevance model:

$$egin{aligned} & P(w|q;\mathcal{F}) & \propto & \sum_{F\in\mathcal{F}} P(w|F) \prod_{i}^{|q|} P(q_i|F) \ & P(\{w,q_i\}|F) &= & \lambda\left(rac{c(w,F)}{|F|}
ight) + (1-\lambda)P(w) \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

(They also present a more robust, unequal sampling method)

Cross-lingual IR

- Query in language L_Q (say, English)
- Search over documents in language L_S (say, Chinese)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Could be done by translating query, or documents
- But can be done directly
- ... using relevance LM to bridge gap

Relevance model in CLIR

- ► Assume parallel corpora *M_E*, *M_C*, with {(*M_E*, *M_C*)} pairs of parallel documents
- Assume target corpus is $\mathcal{T}_C \neq \mathcal{M}_C$.
- Issue query q against \mathcal{M}_E .
- Retrieve top *n* docs \mathcal{F}_E , fetch parallel docs \mathcal{F}_C
- Estimate:

$$P(w_C|\theta_{q_E;\mathcal{F}}) = \sum_{\{F_E,F_C\}\in\mathcal{F}} P(w_C|F_C) \prod_i^{|q|} P(q_i|F_E)$$
(10)

- Apply (10) to each word in each doc in \mathcal{T}_C to calc rel score
- Achieves 90–95% of effectiveness of monolingual IR

Looking back and forward

Back

- Language models (from queries, documents, document sets, corpora) comparing using KL divergence (or Mutual Information)
- KL divergence of query from document a generalization of language model approach
- Relevance feedback in LM can be done by interpolated query and feedback models
 - Feedback model itself mixed with background model
- Relevance feedback methods used to create relevance model
- ► Relevance model can be applied to perform cross-lingual IR

Looking back and forward

Forward

- Language models with relevance feedback similar to Naive Bayes classification
- Relevance models a supervised version of topic models

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Further reading

- Lafferty and Zhai, "Document Language Models, Query Models, and Risk Minimization for Information Retrieval", SIGIR 2001.
- Zhai and Lafferty, "Model-based Feedback in the Language Modeling Approach to Information Retrieval", CIKM 2001.
- Lafferty and Zhai, "Probabilistic Relevance Models Based on Document and Query Generation", LMIR 2003.
- Zhai, "Statistical Language Models for Information Retrieval: A Critical Review", FnTIR, 2008.
- Lavrenko and Croft, "Relevance-Based Language Models", SIGIR 2001.
- Lavrenko, Choquette, and Croft, "Cross-Lingual Relevance Models", SIGIR 2002.